

Aerated StaticUCPile ProjectCE

Members: Emil Chaia, Daniel Gustin, Daryn Nguyen, Liam Reese November 28, 2023 - ENGR 110 Final Presentation Partner: University of California Cooperative Extension

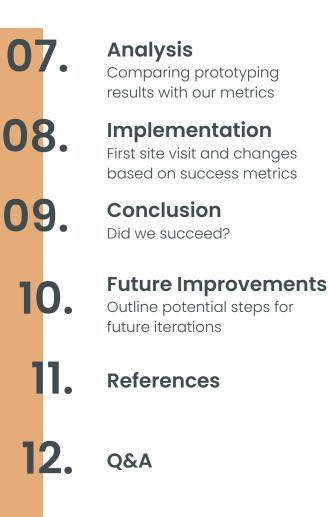
Our Partner

Introduce UCCE and the team, customer profile, ASP piles

Problem & Objectives

Project scope and background

Success Metrics & Goals How will we know if we succeeded?


> Initial Design Process Concepts and decisions

Design Decisions Review process and

additional considerations

Prototyping

Testing challenges and solutions

Our Partner

Mission: Engage UC with the people of California to achieve innovation in fundamental and applied research and education that supports

- Sustainable food production
- Economic success
- A sustainable environment
- Science literacy and youth development programs

Customer Profile

(Credit: Open Space Authority Santa Clara Valley)

Gains

- Reduced manual labor
- Composting system to be copied into more places

Critical Customer

Students, homeowners, and farmers

Needs

- Durability
- Irrigation system for ASP piles
- Easily stored and replicated
- Minimal supplies
- Efficient
- Reach all corners of the pile, not just the top

Pains

- Squirrels breaking into tubing
- Effectively engaging the community with the project
 - Measuring the
 Community Output
- Materials cost
- Water cost/waste

What is an Aerated Static Pile (ASP)?

- AIR OUT COMPOSTING MATERIAL PERFORATED PIPES AIR BLOWER

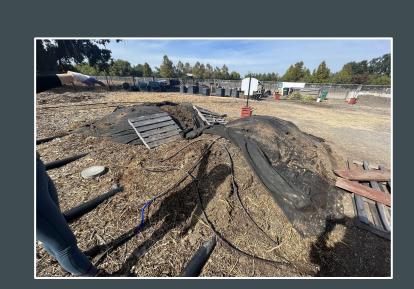
(Credit: LSU Ag Center)

- Aerated meaning air is being pushed through it
- Static means it the piles don't move and won't need to be turned
- Air blower, perforated pipes, composting material
- Piles need moisture in order for microbes to survive
- Efficient

Problem & Objectives

Problem Statement

The UCCE needs an ASP irrigation system for efficient watering to streamline their composting process and support educational programs


Objective

Optimize the ASP system for enhanced sustainability, user engagement, and educational outreach while ensuring continuous improvement and innovation.

Problem & Objectives

Current solution and key differences

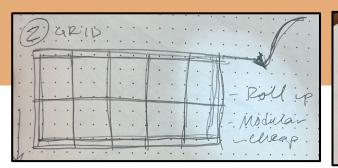
Success Metrics & Goals

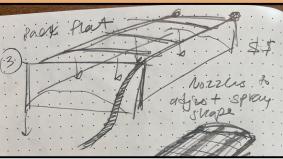
Partner Interview (Wk 4) \rightarrow Design Matrix Criteria

What factors would indicate a successful product?

- Portable/storable
- Automated (time)
- Durable
- Replicable (simple)
- Affordable

Criteria	Weight (1-5)	
Replicability/DIY	5	
Durability	5	
Effectiveness	5	
Cost efficiency	4	
Simplicity	3	
Ease of use	3	
Sustainability	3	
Scalability	2	
Storability	1	


.
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .



Initial Design Process

- 1. Customer Profile \rightarrow Success Metrics
- 2. 5 design concepts
 - a. Based on needs
- 3. Evaluate internally
 - a. Based on success metrics
- 4. UCCE Feedbacka. Incorporate into final decision

Design Sketches

Design 2

Drip irrigation in a flexible, modular grid

Design 3

Elevated frame to hold drip irrigation

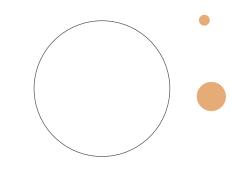
Design 4

Roll up

Drip irrigation mounted on a mesh

Design Decision & Partner Feedback

Design matrix based on success metrics and customer profile


From our initial evaluation and analysis of our design matrix, we chose **Design 2**.

Sent all designs to UCCE

Criteria	Solution 2		Solution 3	
Criteria	Rating	Weight Score	Rating	Weight Score
Replicability/DIY	4	16	3	12
Durability	3	9	5	15
Effectiveness	4	16	5	20
Cost efficiency	3	9	3	9
Simplicity	5	25	3	15
Ease of use	5	25	4	20
Sustainability	4	16	3	12
Scalability	5	25	4	20
Storability	5	25	2	10
Total	33	141	30	123

However we switched from Design 2 \rightarrow **Design 3** based on UCCE preferences, site visit, and feasibility.

Civic Issues

Educational Role

Awareness about composting benefits.

Culture of sustainability, engaging community, students, and farmers.

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources

4-H Youth Development Program

Environmental Impact

Promotes composting adoption, reducing landfill waste, and supports soil fertility.

Social Equity

Open-source design for widespread access.

Benefits diverse communities, promoting inclusivity in sustainable practices.

First Site Visit - Scope

Measure size of the pile	~17.5 ft L x 10 ft W x 3-5 ft H
Find water sources	Separate spigots away from compost areas and hose timer
Inventory available supplies	T connectors, drip irrigation tubing

Building our Prototype

<u>Analysis:</u>

- Its big!
- Very flexible
- How to attach drip irrigation?
- Center spine?
- Side supports?

Approximate cost: \$96-\$100

Second Site Visit - Revision #1

<u>Design Change</u>	<u>Effect</u>	
Glue	Stability	
Drip Irrigation	Moisture on the pile	
Hose connector	Ease of access + automation with timer	

<u>Analysis:</u>

- Stability is still an issue
 - Vulnerable to wind
 - Drip irrigation is sagging
- Timer not working properly

Third Site Visit - Revision #2

Design Change	Effect
Horizontal Supports	Stability
Tightened irrigation	Decreased amount of pooling water
Hose connector	Ease of access + automation with timer

Analysis:

- Much more stable
 - Less prone to wind
- Even coverage of water

Final Product

Challenges

Key Challenges we faced:

- Water bowl debacle
- Time / Resource Management
 - Lots of home depot trips for materials
 - Site visits
- Weather factors
 - Wind and sun exposure
- Testing Moisture levels

Recommendations for the Next Group

Moisture

Evaluating the moisture levels of the new model + effectiveness on a full pile

Stability

Creating a more stable base to combat weather and other factors

Conclusion - Did we succeed?

Partner Criteria	Success?	
Portable/Storable	Yes (4/5)	
Automated	Yes (5/5)	
Durability	Yes (3/5)	
Affordable	Yes (5/5) (total cost ~\$150, under budget)	

0.14.15	Final Product		
Criteria —	Rating	Weight Score	
Replicability/DIY	3	12	
Durability	5	15	
Effectiveness	5	20	
Cost efficiency	4	12	
Simplicity	3	15	
Ease of use	5	25	
Sustainability	3	12	
Scalability	4	20	
Storability	2	10	
Partner Satisfaction	4	16	
Total	32	157	

+12 point increase based on design revisions

References

About Us. About Us - ANR Research and Extension Centers. (2023).

Moeira, Juan, et al. "Composting Series: Building an Aerated Static Compost Pile." *LSU AgCenter*, 27 Apr. 2022 Santa Clara County. (2023)

UCCE programs. UCCE Programs - Santa Clara County. (2023). https://cesantaclara.ucanr.edu/Programs/

University of California, D. of A. and N. R. (2023). About UC Cooperative Extension. Agriculture and Natural

Resources - University of California

Churchill, Steve, director. 150° Compost the "Easy" Way with Aerated Static Pile or ASP Composting. YouTube,

YouTube, 22 May 2021

Thank You!

Special Thanks to Victoria, Jenel, Maya, Aly, and Dr. JAK for their flexibility and help throughout our project!

Questions?

